DSANLS: Accelerating Distributed Nonnegative Matrix Factorization via Sketching Technical Report
نویسندگان
چکیده
Nonnegative matrix factorization (NMF) has been successfully applied in di erent elds, such as text mining, image processing, and video analysis. NMF is the problem of determining two nonnegative low rank matrices U and V , for a given input matrix M , such that M ≈ UV >. There is an increasing interest in parallel and distributed NMF algorithms, due to the high cost of centralized NMF on large matrices. In this paper, we propose a distributed sketched alternating nonnegative least squares (DSANLS) framework for NMF, which utilizes a matrix sketching technique to reduce the size of nonnegative least squares subproblems in each iteration for U and V . We design and analyze two di erent random matrix generation techniques and two subproblem solvers. Our theoretical analysis shows that DSANLS converges to the stationary point of the original NMF problem and it greatly reduces the computational cost in each subproblem as well as the communication cost within the cluster. DSANLS is implemented using MPI for communication, and tested on both dense and sparse real datasets. The results demonstrate the e ciency and scalability of our framework, compared to the state-ofart distributed NMF MPI implementation. Its implementation is available at https://github. com/qianyuqiu79/DSANLS.
منابع مشابه
A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملAccelerating the Lee-Seung Algorithm for Nonnegative Matrix Factorization
Approximate nonnegative matrix factorization is an emerging technique with a wide spectrum of potential applications in data analysis. Currently, the most-used algorithms for this problem are those proposed by Lee and Seung [7]. In this paper we present a variation of one of the Lee-Seung algorithms with a notably improved performance. We also show that algorithms of this type do not necessaril...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017